Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty by Elizaveta Levina,1 Adam Rothman

نویسندگان

  • JI ZHU
  • J. ZHU
چکیده

The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, but, unlike regular Lasso applied to the entries of the Cholesky factor, results in a sparse estimator for the inverse of the covariance matrix. An iterative algorithm for solving the optimization problem is developed. The estimator is compared to a number of other covariance estimators and is shown to do best, both in simulations and on a real data example. Simulations show that the margin by which the estimator outperforms its competitors tends to increase with dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty

The paper proposes a new covariance estimator for large covariance matrices when the variables have a natural ordering. Using the Cholesky decomposition of the inverse, we impose a banded structure on the Cholesky factor, and select the bandwidth adaptively for each row of the Cholesky factor, using a novel penalty we call nested Lasso. This structure has more flexibility than regular banding, ...

متن کامل

Sparse permutation invariant covariance estimation

The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate ...

متن کامل

Generalized Thresholding of Large Covariance Matrices

We propose a new class of generalized thresholding operators that combine thresholding with shrinkage, and study generalized thresholding of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and carries almost no computational burden. We obtain an explicit convergence rate in the operator norm that shows the tradeo...

متن کامل

A new approach to Cholesky-based covariance regularization in high dimensions

In this paper we propose a new regression interpretation of the Cholesky factor of the covariance matrix, as opposed to the well-known regression interpretation of the Cholesky factor of the inverse covariance, which leads to a new class of regularized covariance estimators suitable for high-dimensional problems. Regularizing the Cholesky factor of the covariance via this regression interpretat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007